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ABSTRACT

NASA has been interested in the development of methods for

evaluating the predictive accuracy of structural dynamic
models. This interest stems from the use of mathematical

models in evaluating the structural integrity of all spacecraft
prior to flight. Space structures are often too large and too

weak to be tested fully assembled in a ground test laboratory.
The predictive accuracy of a model depends on the nature and
extent of its experimental verification. The further the test
conditions depart from in-service conditions, the less accurate

the model will be. Structural damping is known to be one

source of uncertainty in models. This paper explores the
uncertainty in damping to evaluate the accuracy of dynamic
models. A simple mass-spring-dashpot system is used to

illustrate a comparison among three methods for propagating
uncertainty in structural dynamics models: the First Order

Method, the Numerical Simulation Method and the Fuzzy Set
Method. The fuzzy set method is shown to bound the range of

possible responses and thus to provide a valuable limiting
check on the First Order Method near resonant conditions.

Fuzzy methods are a relatively inexpensive alternative to

numerical simulation and they can be used to classify uncertain
parameters into useful groupings.

INTRODUCTION

With the availability of high-speed digital computers and finite
element modeling, it has become possible to model highly

complex structural systems, such as the Space Shuttle, in great
detail with tens of thousands of structural degrees of freedom

(DOF). Structural dynamic models are greatly reduced,

however, depending on their application. For example,
dynamic analysis models may be reduced to thousands of DOF,

test support models to hundreds of DOF, and control system
models to tens of DOF. One of the chief concerns in model

reduction is loss of accuracy, particularly in the very low-order
models which represent the structural "plant" in controls

applications. There are numerous other sources of inaccuracy
as well, which can only be evaluated by testing the structure.

Testing for purposes of dynamic model verification usually
involves a modal survey. While it used to take weeks or even

months to conduct a modal survey using tuned sine dwell and
analog data processing, the same number of modes can now be

obtained in a matter of days using random vibration and digital
data processing. Again, the digital computer has played a vital
role in the development of this technology. Unlike the large
mainframe computers used for analyzing finite element models,
it is the minicomputers and microprocessors which over the

past ten years have given impetus to the growth of experimental

modal analysis. Experimentally derived modes are routinely

compared with analytically predicted modes as a means of
verifying an analytical model.

For the most part, analytical model verification is still
performed intuitively, by trial and error. Experimental mode

shapes and frequencies are compared with analytical predictions
and the model is adjusted by hand in an effort to bring it into
agreement with experimental data. Very often, the experimental
modes are used directly in subsequent analysis rather than

attempting the time-consuming (and sometimes unsuccessful)
task of adjusting a model to match the data. There are many
cases where the experimental modes cannot be used directly,
however, as in the case of large space structures which are too

large and/or too weak to be ground tested in their entirety.
Models must then be relied upon to predict dynamic behavior,
and the accuracy of these predictions is of major concern.

One of the problems confronting engineers today is, that while
the tools for structural design, analysis and testing have
individually matured over the past two decades, it is still not

possible to predict with confidence how well a structure will
perform in a given environment without direct experimental
verification, i.e. without actually testing the operational

configuration of the structure in an adequate simulation of that
environment. In the case of large space structures, neither of
these conditions can be met. The thermal, atmospheric and

gravitational environment of space cannot as yet be adequately
simulated in a ground test laboratory. Secondly, the fully
assembled structures are too large to be tested in an earth-
gravity environment except by either substructure or subscale

testing. In many cases their configurations will change as
transport vehicles dock and separate, as appendages are
repositioned, as supplies are consumed, and as the structures

grow or are otherwise altered to accomplish various space
missions. Knowledge about the accuracy of a model is
important information for the design of a control system; some
inaccuracy can be tolerated by a robust controller, but there are

tradeoffs between robustness and performance. The greater the
uncertainty in the structural model, the poorer the control of the
structure.

Two needs are therefore recognized: (1) to develop a means of
_evaluating the predictive accuracy of structural dynamic models
when the structure cannot be tested under in-service conditions,

and (2) to develop methods for enhancing the predictive

accuracy of a model through a suitable program of ground
testing. On-orbit testing will ultimately be required to obtain an
accurate model of the "as-built" structure in space. However,
the task of on-orbit identification will be greatly facilitated

(perhaps only possible) by having first verified major portions
of the structural model through ground testing.
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This paper illustrates some of these ideas by focusing on the

uncertainty of damping in structural dynamics models. The
estimated modal damping matrix corresponds to the test modes.
In general, a different modal damping matrix is obtained when
the estimated damping matrix is transformed to the coordinate

space of the analytical modes. The difference between the two
provides one measure of damping uncertainty. The paper also

demonstrates by numerical example three methods for
propagating the uncertainties in modal mass, stiffness and
damping forward through the model to evaluate the accuracy of

response predictions, and backward to evaluate the
uncertainties of model parameters. These three alternative
methods for propagating uncertainty are the: First Order
Method, Numerical Simulation Method and Fuzzy Set Method.

UNCERTAINTY IN DAMPING

The normal mode method is widely used for dynamic analysis
of linear structures. By enabling the equations of motion to be
written in terms of modal coordinates, solutions are more

readily determined. Fortunately, structural damping tends to be
small so that the classical undamped modes have a useful

physical interpretation. It is common practice to introduce
damping only after the equations have been transformed to
modal coordinates. In this case, viscous damping is typically

assumed and the modal damping matrix is taken to be diagonal.
The elements along the diagonal are related to the percent of
critical damping for each mode, while the rest of the matrix is

neglected assuming that the modes are not coupled by damping
forces in the structure. This assumption is valid whenever the

modal frequencies are not closely spaced [1].

Although justification may be found for neglecting these terms
in some analyses, there are times when this assumption is

inappropriate. For example, when modal sy.nthesis is
employed to combine substructure characteristics m deriving
the equations of motion for a complete structure, and linear
viscous damping is taken to represent the dissipative
mechanism of the structure, the full modal damping matrices

are required for each substructure. Since the off-diagonal terms
are likely to be of the same order as the diagonal ones, they too
will influence the modal damping being computed for the

complete structure.

The full modal damping matrix will also be useful in adjusting
experimentally determined modal damping for structural models
which must be revised to account for differences between earth

and space environments. Such differences may include

• mass, stiffness and damping of suspension systems

• gravity loading

• thermal loading

• air damping

There are now several methods available for estimating the full

modal damping matrix and for extracting complex modes from

measured structural response [2-5].

METHODS FOR PROPAGATING UNCERTAINTY

There are a number of ways in which uncertainty can be
propagated through a model. Theoretically, if probability

distributions were known for the parameters of a model, and a
functional relationship existed between the parameters and

some desired response characteristic such as frequency
response, then it would be possible to determine the probability
distribution of that response characteristic. From a practical

standpoint, however, this approach is not feasible. Probability
distributions for the model parameters are rarely if ever
available, and even if they were, the task of combining them to

obtain the probability distributions of response would be
exceedingly difficult. Fortunately, more practical alternatives
do exist. Three are discussed in the following subsections, and

then compared for a simple numerical example.

F'wst Order Statistical Method

The First Order Statistical Method is perhaps the simplest, least

expensive and most familiar approach. First order methods are
based on linearization and are best suited to problems involving

either linear or weakly nonlinear relationships among the

parameters and input-output variables of the problem.

First order statistical methods are based on the principle of

linear covariance propagation, or the linear transformation of
covariance matrices from one set of variables to another. For

example, suppose that r denotes a vector of random variables.
These random variables might represent selected mass and

stiffness parameters of a structural model which are not
precisely known. The expected values of these random

variables may be designated by the vector I.tr. The covariance

matrix of the vector r is then

E[(r-Br)(r-l.tr) T] = Srr (1)

Suppose further that the vector u represents a second set of
random variables (e.g. eigenvalues and eigenvectors) related to

r by u = f(r). The random variables, u, can be expressed in
terms of the random variables, r, using a Taylor series

expansion about the mean of u, denoted Bu.

u = I.tu + _u/_r (r - Br) + ........ (2)

If the higher order terms are neglected, the covariance matrix of

u is given by

E[(u-l.tu)(U-l.tu) T] = E{_u]_r (r - I.tr) (r - I.tr)T _u/_r T } = Suu (3)

or

Suu = Tur E[(rd.tr)(r-l-tr) T] Tur T = Tur Srr Tur T (4)

where E denotes the expectation operator, and

Tur = _u/_r (5)

In particular, the jk th element of the rectangular partial
derivative matrix, Tur, is the scalar quantity

(Tur)jk = _uj/_rk (6)

It is desirable to make the inverse transformation from u to r as
well as the direct transformation from r to u. However,

whereas one can express u as an explicit function of r, the
converse is not true; one cannot write the functional relationship

r=f-t(u) in explicit form. Instead, r and Srr are obtained by
statistical estimation [6-8]. The inverse transformation of the
covariance matrix Sun to Srr is given by

Srr = [(Tur) T Suu -1 Tur] "1 (7)

In Equation (7) the dimension of u must be greater than or

equal to that of r.

Equation (7) is useful in the evaluation of predictive accuracy.
A method is available to derive Suu from sets of predicted and

measured modal data whenever u represents modal frequencies
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and displacements. From this information it is possible to
obtain by direct transformation (Equation 4) the covariance

matrices of frequency response, impulse response or other
measures of performance which are dependent on these. It is

also possible to obtain the corresponding covariance matrix of
parameter estimates by the inverse transformation (Equation 7).

Numerical Simulation

Numerical simulation is conceptually the simplest method for
propagating random uncertainty through a model. The model

may be linear or nonlinear, and the random parameters of the
model may be assigned any desired distribution. Unlike linear

covariance propagation where only the first two central

moments of the parameter distributions are propagated, the
entire distributions are propagated in numerical simulation. The

chief disadvantage is the computational effort required.

In numerical simulation (or Monte Carlo simulation), parameter
values are selected at random, and the model is exercised to

compute the response quantities of interest. The desired

parameter distributions are obtained by first using a random
number generator to generate a sequence of numbers uniformly
distributed between zero and one. The resulting sequence of

numbers is used in the simulation. Because of the usual large
number of calculations required for accuracy, this type of
numerical simulation is not practical for large structural
dynamics models. It is useful, however, for treating isolated

nonlinearities, and for applications involving simple models.

Fuzzy Set Method

Fuzzy sets offer an alternative to random variables for

representing uncertainty. Numerous works explaining fuzzy

sets are available in the literature 191. Whereas the uncertainty
of a random variable is measured in terms of probability, the
uncertainty of a fuzzy set can be measured in terms of

possibility. Probability implies random uncertainty; however,

possibility can be used to measure non-random uncertainty.
The degree of uncertainty in a fuzzy set is defined by its
membership value. The membership of a fuzzy set measures

the level of possibility and ranges from zero to one. The degree
of membership in a set can be thought of as a measure of the

"belongingness" of a particular variable to that set. Fuzzy sets
are used quite often to describe "linguistic" variables (such as
light, moderate, heavy, etc.) where the variable can have a

vague, or fuzzy meaning. Unlike probability density functions
which define the relative frequency of occurrence of a random
variable as a function of the values which the random variable

may assume, the membership function defines the range of
possibility of a fuzzy number as a function of membership. In
the case of a triangular membership function where the vertex
has a membership of unity, the value of the fuzzy number
corresponding to the vertex is interpreted as the deterministic
value.

It is important to keep in mind that the concepts of a density

function and a membership function are different. A density
function is based on probability theory which in turn is
postulated from "crisp set" mathematics. A crisp set merely
defines the sample space of a random variable; the variable is

either in the sample space (membership = 1) or it is not
(membership = 0). A fuzzy set differs from a crisp set (sample
space) by allowing for vagueness in the prescription of the

boundaries of the sample space. It is also noted that crisp sets
are special subsets of fuzzy sets, and that probability theory is a
special subset of possibility theory.

With this distinction in mind, one can attempt to relate the
membership function of a fuzzy set to the probability density

function of a random variable. This will be shown to be a

useful relationship in the sense that it provides a means of
bounding the uncertainty of response predictions, particularly

when structural response is a highly nonlinear function of the
uncertain model parameters. In this situation, first-order
methods tend to be unreliable, and simulation methods too

costly.

The propagation of uncertainties using fuzzy sets involves
computations with interval variables and functions [9]. For

example, a variable, x, could have as its value a or b or 3.5,
etc. which are real numbers. Similarly, an interval variable,
denoted by X, will have as its value [a,b]. All arithmetic

operations on interval numbers can be applied to interval
variables. A function of the interval variable X = [a,b] can be

defined by

Y=f(x)={f(x)lxe X}={f(x) lx_ [a,b]} (8)

whose value usually would be an interval number. When f(x)
is continuous and monotonic on X = [a,b], Y can simply be

obtained by

Y = {min If(a), fib)], max If(a), fib)]} (9)

The Vertex Method can be used to propagate uncertainties
whenever Y is a function of many interval variables [10].
When Y = f(Xl,X 2..... Xn) is continuous in the n-dimensional

convex region, and no extreme point exists in this region
(including the boundaries), then the value of the interval

function can be obtained by

Y=f(XI, X2 ..... Xn) = {min.[f(cj)], max [f(cj)l}; j=l, n (10)
J J

where cj = (Xlj, X2j ........ Xnj ) represents the coordinates of

the jth vertex in n-dimensional space.

Comparison of Methods by Numerical Example

The amplitude and phase of the complex frequency response
function (FRF) are important characteristics of actuator-to-
sensor transfer functions for purposes of control-structure

interaction. As a means of helping to evaluate the relative
merits of the three alternative methods for propagating

uncertainty presented in this section, numerical examples are
presented for the amplitude of a complex FRF [11].

The equation of motion for a single-degree-of-freedom system

subjected to a harmonic disturbing force f is given by,

m(d2x/dt 2) + c(dx/dt) + kx = f(t) (11)

where m is the mass, c the damping coefficient, k the stiffness,
x the displacement, and t is time. The amplitude of the complex

FRF is given by the familiar formula

A([2) = [(k - m_2) 2 + (c_"_)21"1/2 (12)

where f2 is the frequency content of the force f. If it is assumed
that m, c and k are all random variables with the probability

density functions shown in Figure 1, where mo, Co and ko

correspond, respectively, to the nominal or mean value of m, c
and k, one can write Equation (12) in the dimensionless form

A(m', c', k') = {k' - m' [2'2) 2 + 4 402 c '2 f_,2]}-1/2 (13)

where:

and where:

m' = m/mo, c' = C/Co, k' = k/ko, f_' = [2/(o0

COo= _/ko/mo ; _o = Co/(2qkomo)
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Despite the simplicity in appearance of Equation (13), an
analytic closed-form expression for the derived distribution of

A(12) given the distributions of m, c and k is extremely difficult
to obtain. Consequently, numerical methods are sought.

To apply the First Order Method, one must first differentiate

Equation (13) with respect to m', c' and k'. These derivatives,
0A/0m', 0A/0c', _A/_k are quite complicated and have been
documented elsewhere [12]. Then one must derive the mean
and standard derivation of each of the normalized density
functions in Figure I. The mean in each case is simply unity.
For the present example [I 1], the standard deviations for m', c'
and k' (see Figure I) are

(_m,2 = 0.0204, ¢_c,2 = 0.2458, ¢_k'2 = 0.0612

Finally, if loguormal distributions are assumed for the thre,e
uncertain parameters, the distribution functions for various

frequency ratios (fl') shown in Figure 2 are obtained.

These are approximate distributions, which should be good as
long as the excitation frequency is not near resonance. In

Figure 2, therefore, the plot for fF =I may not be a good
approximation. To verify this assumption, Monte Carlo
simulations were run for the same four cases. The results of
these simulations based on a sample size of I0,000, i.e.,
I0,000 evaluations of Equation (13), are superposed on the
previously derived loguormal density functions in Figure 2 for
comparison. As expected, the first-order approximations arc
valid for the three off-resonant cases.

If the structural parameters are estimated by triangular fuzzy
sets which are similar in shape to the density functions given m
Figure 1, the uncertainty in m, c and k (the base of the
triangles) are the same in magnitude, but the peak membership
at rno, Co and ko are normalized to unity to provide for normal
membership functions [9]. This can be done because in fuzzy
sets, the area under the membership function does not have to
be unity as is required for a probability density function. The
processing required by Equation (10) is carried out using the
Vertex method as previously described.

The derived fuzzy membership functions of FRF amplitude for
the four excitation frequencies are shown in Figure 3. The
curves in Figure 3 are similar to their counterparts in Figure 2,
both in the spread and the frequency at which maximum
amplification occurs. Comparison of the absolute density
values (ordinates) in Figure 2 with the membership values
(ordinates) in Figure 3 is not meaningful because of the
theoretical differences between membership functions and
density functions [9].

As a final example, all three uncertainty propagation methods

are applied to a case where c'= 0.025 and fl'= 0.975. This
frequency ratio corresponds to the lower half power point of
the frequency response function. The uncertainty in damping is
assumed to be negligible for purposes of demonstration. At
this frequency, the sensitivity of FRF amplitude to mass and
stiffness is greatest, so that the first-order approximation
should be at its worst. The results are plotted in Figure 4.
Figure 4a shows the comparison between the First Order
Method and Monte Carlo Simulation. Figure 4b shows the
corresponding membership function. The unusually shaped
distribution produced by the Monte Carlo Simulation is
evidently the result of the (sightly) rounded peak of the FRF at
an amplification of 20, which allows sampled amplitudes to
"collect" in this narrow frequency band.

The example in Figure 4 illustrates how the first order method

can yield unrealistically high response levels when A(_) is
evaluated near resonance. It represents a deliberate attempt to
force such a result, and is admittedly a pathological case. In
reality, there will be damping uncertainty which will tend to
extend the upper tail of the actual distribution, making the fwst
order method a better approximation. However, in general,
there is no guarantee that this will happen; the fuzzy set method
therefore serves as a limiting check on the first-order method.

When using the vertex method, the number of required FRF
calculations is given by:

n = 2Na Nf Nr (2Np) (14)

where Na = number of alpha cuts
Nf = number of frequencies
Nr = number of FRFs
Np = number of uncertain parameters

This number, n, can become very large as Np becomes large.
Since the basic uncertain parameters in the present analysis are
modal mass and stiffness parameters, Np depends on the
number of modes represented in the generic uncertainty model.
For for a system with only 10 modes, Np can be shown to be
equal to 110 and n from Equation (14) is on the order of 1033!
However, since the fuzzy set method proves most helpful near
resonance, only a few of the uncertain modal parameters should
be important in these cases. A method to identify which of the
modal parameters are important near resonance would be most
desirable.

FUZZY CLASSIFICATION MZFHOD

An approach involving fuzzy classification [13, 14] is being
explored to identify the most significant modal parameters that
affect the FRF near resonance in multi-degree-of-freedom
systems. In this approach a finite data set, X = {Xl, x2 .... Xn}
is defined where each data set corresponds to an uncertain
modal parameter. Each data set can be characterized by one or
more features. The present analysis is looking at two features
for each data set: (i) the coefficient of variation of the uncertain
parameter which is obtained from the corresponding diagonal
term of the covariance matrix (e.g. Srr) of modal mass and
stiffness parameters, and (ii) the sensitivity of the desired
response quantity to that parameter (e.g. Tur). The fuzzy
classification method partitions these n data sets into c classes
where c << n. In this case, the classes or groups might be a
group of "important" parameters, a group of "unimportant"
parameters, a group of "moderately important" parameters, and
so forth, where the fuzzy membership value in a class/group

• ii. II,could be a measure of its tmportance, i.e. a membership value
of 1 would be important and a value of 0 would be
unimportant.

As an example, suppose n = 6 and c = 2. The six data sets
might correspond to the six independent modal mass and
stiffness parameters of a 2-mode covariance matrix [15].
Define classl as the important parameters and class2 as the
unimportant parameters. The fuzzy classification algorithm
begins by making arbitrary "crisp" class assignments for each
of the data sets, as

Xl x2 x3 x4 x$ x6
clasSl: 1 0 0 1 0 0
class2: 0 I I 0 I I

If one were interested in the response at some point on a
structure near the first resonant frequency, and modes 1 and 2
were well separated, then one would expect only the diagonal
modal mass and stiffness terms associated with the fast mode
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(i.e., data sets Xl and x4) to be significant.

Details of the fuzzy algorithm have been described elsewhere
[13], but the resulting fuzzy partition might take the following
form:

Xl X2 X3 X4 x5 x6
class1: .91 .08 .13 .95 .11 .07
class2: .09 .92 .87 .05 .89 .93

Each column of the fuzzy partition matrix above (denoted as the
U matrix) defines the membership of a given data set (uncertain
parameter) in each of the two classes. The columns must sum
to unity regardless of whether U is a fuzzy or crisp partition
matrix. In situations where the membership values are not all
close to zero or one, additional classes (i.e., c > 2) might be
assumed and another classification analysis conducted on the
data sets.

The fuzzy classification method may be used directly to select a
reduced parameter set for subsequent use in the fuzzy vertex
method, or it may be used to construct a fuzzy relation which
establishes the degree of relationship to which data set xi and xj
are related. One such fuzzy relation, R, results from the
computation,

R = ( u*uT)/n (15)

where U is a fuzzy partition matrix segregating n data sets into
c classes, and the operation * is algebraic [16]. This relation,
R, gives a measure of the relative membership of the data
clusters to individual classes. This relation has some special
properties: it is always symmetric, the sum of its entries is
unity, and the measure of "misclassification" is computed by
subtracting the mace of the matrix R from unity. The diagonal
elements of R give a measure of the total allocation of
membership within a class and the off-diagonal elements yield a
measure of the membership allocation between pairs of classes.

CONCLUSIONS

Damping is understood to be a major source of uncertainty in
structural analysis. Of particular concern is the fact that
damping has heretofore been unpredictable in complex
structures; it must be determined experimentally for a prototype
structure in an environment similar to that in which response
must be predicted. In the case of large space structures, it will
be impossible to measure damping directly because of physical
limitations on ground testing, and because of the differences
(atmospheric, thermal and gravitational) between the earth and
space environments. Methods to accurately account for
damping uncertainty will significandy improve plant models
and afford opportunities for more accurate controllers of
motion.

A comparison was made of three alternative methods for
propagating uncertainty: the First Order Method, the Numerical
Simulation Method and the Fuzzy Set Method. A single-
degree-of-freedom mass-spring-dashpot system was selected
for this purpose. Triangular probability density functions were
defined for the mass, stiffness and damping parameters (m, k
and c). Frequency response function (FRF) amplitude for
displacement response to a force input was computed for the
nominal damping ratio of 2.5%.

It was found that the Fuzzy Set Method bounds the range of
possible responses and it provides a valuable limiting check on
the First Order Method. The Fuzzy Set Method is a relatively
inexpensive alternative to numerical simulation for propagating
parameter uncertainty in complex models, whereas numerical
simulation becomes prohibitively expensive.

The fuzzy classification method reveals clusters in the data in a
multi-dimensional feature space. This automated procedure
does not produce labels, vis a viz "important" or
"unimportant". These labels have been assigned in a very
arbitrary sense considering our limited understanding of
damping. The utility in these methods for this problem would
be in the area of experimental planning and in numerical code
predictive accuracy. The notions of clustering of data in some
feature space gives a clue of not only what kind of
measurements to take, but maybe where to take them and
whether redundant measurements are warranted. These
methods eventually can act as a confirmation of behavior once
specific sets of conditions are known to lead to some well
understood response pattern.
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Figure 2. Comparison of First Order Method (lognormal) with Simulation Method (from [ 11 ])
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Figure 3. Membership Functions for FRF Amplitude (from [11])
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